
Пример разбора:

Case study description:

Initial information

The control units of air conditioner system deploy some portions of compiled software. The design

of software architecture requires applying some modifications to reduce some high-to-low level of

existing disadvantages. Those disadvantages refer to a) the performance and features of end product,

and b) limitations from cost reduction objectives.

The given formulation of software disadvantages and problem tasks are described in QAW-ATAM

documents in form of engineering scenarios with their tabled parameters.

Problem identification

By performing the traditional QAW procedure, the following selection of preliminary scenarios are

under analyses:

Scenario 1: The system should respond in 0.5 second for user inputs in normal operation time

Scenario 2: The system should respond in 100ms for real time request (interruptions)

Scenario 3: Minimize the usage of RAM size

To handle those scenarios (i.e. solving hidden key problems), their expressions should be

reformulated with additional information and dependencies. It is desirable to use a contradicting

formulation to include the additional information as shown in Table 5

Table 5. Reformulating scenarios

Initial scenario Modified scenario (contradiction)

The system should respond in 0.5 second for user
inputs in normal operation time

The system should respond in 0.5 second for user
inputs in normal operation time, to improve (or to
provide) user satisfaction. but this will decrease (or
damage) system modifiability, and will require higher
RAM size.

The system should respond in 100ms for real time
request (interruptions)

If the system will provide 100 ms as a limit of time
response, the interruption of outdoor compressor will
be handled which provide safety (reliability) but the
there is a risk of increasing implementation complexity
and mismatching other important factors
(information)

The usage amount of RAM should not exceed
16 Kbytes

If the usage amount of RAM of the system is under 16
Kbytes, it is possible to meet H/W spec, which should
supports both new and old model with same solution.
(24Kb in new model, 16Kb in old model)
However, there is a risk of increasing implementation
complexity(Manage RAM per task) and stack overflow.

This exercise highlights some hidden details and apply “why?” approach when trying to clarify the

key reason of an advantage or disadvantage. This approach is usually also used in building the cause-

effect chains (or root cause analysis).

On the other hand, the reformulated scenario enables applying TRIZ-based abstracting language, via

matching specific system properties with contradiction matrix parameters.

Problem solving

Solving key problems which are highlighted by formulated technical and physical contradictions (in

this case study only technical contradictions are reviewed) starts with usage of contradiction matrix, and

ends with describing conceptual directions of solving by inventive principles.

The description of problem solving is performed as following 3-step process:

A) Matching parameters: Transform the identified system properties into equivalent parameters of

the contradiction matrix. This process is shown in Table 6

Table 6. Equivalent TRIZ- based parameters

 Contradiction matrix parameters

of improvement of worsening

Contradicting
properties of
scenario 1
See

Advantages High operation time
User satisfaction

Speed, Duration of action of
moving object, Loss of

information, Loss of time

-

Disadvantages Modifiability
RAM size

- Device complexity,
adaptability and versatility

of manufacture

Contradicting
properties of
scenario 2
See

Advantages Safety Reliability -

Disadvantages Complexity - Device complexity

Contradicting
properties of
scenario 3
See

Advantages H/W Spec
satisfaction

Adaptability -

Disadvantages Complexity
Stack overflow

- Complexity of control

 Remark 1: The used here “contradiction matrix” are in of two editions: a) original Altshuller matrix b) Adapted

by Goldfire InnovatorTM for software objects

 Remark 2: Some of other contradictions might be physical contradictions, which solving way differs from the

described here

B) Extracting inventive principles

After the step recognizing parameters, the contradiction matrix points which appropriate inventive

principles are recommended to apply. Next Table 7 describes some of those matched principles.

Table 7. Found inventive principles

 Inventive principles General description

Contradiction 1  Segmentation - divide an object into independent parts
 - make an object easy to disassemble
 - increase the degree of fragmentation (or
segmentation) of an object

 Asymmetry - divide an object into independent parts
 - make an object easy to disassemble
 - increase the degree of fragmentation (or
segmentation) of an object

 Preliminary action - perform the required change of an object
(either fully or partially) before it is needed
 - prearrange objects conveniently so that they
can come into action quickly, without losing time
during delivery

 Other way around - invert the actions that are used to solve the
problem (for example, instead of cooling an
object, heat it)
 - make movable parts (or the external
environment) fixed, and make fixed parts
movable
 - turn the object (or process) 'upside down'

 Dynamics - enable (or design) the characteristics of an
object, an external environment, or a process to
make it optimal or to find an optimal operating
condition
 - divide an object into parts that can be moved
relative to each other
 - if an object (or a process) is rigid or inflexible,
make it movable or adaptable

 Mechanics substitution - replace a mechanical means with a sensory
means (optical, acoustic, taste, or smell)
 - use electric, magnetic, and electromagnetic
fields to interact with the object
 - change from static fields to movable fields,
from unstructured fields to structured fields
 - use fields in conjunction with field-activated
particles (for example, ferromagnetic particles)

 Discarding and recovering - make parts of an object that have fulfilled their
function go away (discard by dissolving,
evaporating, and so on), or modify the parts
directly during operation
 - conversely, restore consumable parts of an
object directly during operation

Contradiction 2  Other way around See up

 Parameter changes - invert the actions that are used to solve the
problem (for example, instead of cooling an
object, heat it)
 - make movable parts (or the external
environment) fixed, and make fixed parts
movable
 - turn the object (or process) 'upside down'

 Segmentation See up

Contradiction 3  Change the degree of
freedom

- change the degree of freedom of an object

 Segmentation See up

 Remark: The “Contradiction N” means the contradiction of scenario N.

C) Applying inventive principles: After selecting the potential inventive principles from the

contradiction matrix, analyze the opportunities of their specific applications. The usage of supporting

samples to understand how to apply an inventive principle can increase the performance.

Table 8. Inventive principles application

Inventive principles Sampling references Explanation of applying

Segmentation • Client/Server Architecture
• Serial batch processing
• Paging
• Data structures (linked lists)
• Database partitioning
• Database normalization
• RAID array
• Parallelism

• Modular design

If the responding time depends on a sequence of
elements/route, then choose the segment which
could be optimized without increasing RAM

Asymmetry • Compression with data loss
• Priority
• Ragged arrays
• Asymmetric data compression
• One-way hash function
• 2-3 Trees

If the system has symmetric or asymmetric “action-
respond” relationship, then increase the asymmetry
level, to enable responding information in a form of
frequent “notification events’

Preliminary action • Compilation vs. interpretation
• Presorting
• Query optimization
• Preallocation of resources

• Caching

Perform responding events before it is needed by
user. Or pre-arrange objects such that they can
come into action from the most convenient place
and without losing time for their delivery

Other way around • ASP delivery model
• Inverted index
• Garbage collection

• Pattern-matching in reverse

Include a part of responding information in the
“request” format of action

Dynamics • Dynamic memory and resource
allocation

• Software that adapts to
hardware configuration

• Software that adapts to user
interaction

• Packet routing
• DNS
• Load balancing
• Associative array

• Common Object Request Broker
Architecture (CORBA)

Enable responding objects to have flexible
movement (decrease dependencies) manner
between operating zones

Mechanics
substitution
(Change type of
interaction)

• Entity-Attribute-Value data
model

• User interface transformations
• Data abstraction to capture

physical phenomena (RFID)
• VARCHAR data type
• Artificial neural network

to apply this principle it is vital to find out some
equivalent methods of mechanics in our information
objects. After enhanced discussion between TRIZ
experts, we can identify three methods (continuous
movement, leveraging, hitting) – avoiding written
explanations it is possible to consider “respond”
event as one of those three methods

Discarding and
recovering

• Paging
• Garbage collection
• Linear hashing
• Data structures (linked lists)
• Using temporary files for archive

access

Design a responding entity at user side which gather
pieces of required response information from direct
object place during operation

Parameter changes • Pacing data flow to manage the
interaction between systems

• Just-in-time compilation (JIT)
• Transmission buffer packing
• Tired data storage
• Highlighting keywords and

sentences in source documents
• Codepage transformation
• Variable bit rate in audio and

video files

undefined

Change the degree of
freedom

• Associative array
• Dataflow computing
• Load distribution
• Paging

If the system supports physical memory device as
hard disk, the part of data that is not used by a
process is unloaded from RAM to a hard disk.

Segmentation • Client/Server Architecture
• Serial batch processing
• Paging
• Data structures (linked lists)
• Database partitioning
• Database normalization
• RAID array
• Parallelism

• Modular design

If there are main module which MUST loaded in
RAM,
Move it from RAM area to ROM.
It is possible to reduce usage amount of RAM
without
Complexity.

After providing the specific formulation of found inventive principle, the software architect review

them for validating feasibility and specifying details of available ones. Sometimes, the architect is able to

generate the specific ideas himself when looking on the samples of principles.

It is important to mention here, that the identified principles of QAW++ usually cover the suggested

ones of traditional QAW.

Handling secondary tasks (Tradeoffs)

Secondary tasks (Tradeoffs) appear sometimes in QAW after suggesting and describing a new

software architecture. The QAW++ contains a new feature (opportunity) of handling those secondary

tasks which could be a serious barrier of applying a good idea or solution.

The case study includes consideration of two tradeoffs:

1) Coupling among modules vs. real time transaction

2) Source code volume vs. real time transaction

The procedure of handling those secondary tasks (tradeoffs) is similar to problem solving as it is

based on using contradictions approach, which algorithm repeats same steps:

A. Formulating the technical contradiction using contradictive properties of a tradeoff

B. Find out the equivalent parameters from software-oriented contradiction matrix

C. Extract the recommended inventive principles from contradiction matrix

D. Provide explanation of each specific application of those principles

E. Validate the feasibility of generated ideas and conceptual directions of solving

This approach is implemented for mentioned tradeoffs as shown on Figures 5, 6:

Figure 5. Handling Tradeoff 1

Figure 6. Handling Tradeoff 2

